The Limit Empirical Spectral Distribution of Gaussian Monic Complex Matrix Polynomials

نویسندگان

چکیده

We define the empirical spectral distribution (ESD) of a random matrix polynomial with invertible leading coefficient, and we study it for complex $n \times n$ Gaussian monic polynomials degree $k$. obtain exact formulae almost sure limit ESD in two distinct scenarios: (1) \rightarrow \infty$ $k$ constant (2) $k $n$ constant. The main tool our approach is replacement principle by Tao, Vu Krishnapur. Along way, also develop some auxiliary results potential independent interest: slightly extend result B\"{u}rgisser Cucker on tail bound norm pseudoinverse non-zero mean matrix, several estimates singular values certain structured matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monic Non-commutative Orthogonal Polynomials

For a measure μ on R, the situation is more subtle. One can always orthogonalize the subspaces of polynomials of different total degree (so that one gets a family of pseudo-orthogonal polynomials). The most common approach is to work directly with these subspaces, without producing individual orthogonal polynomials; see, for example [DX01]. One can also further orthogonalize the polynomials of ...

متن کامل

A local limit law for the empirical spectral distribution of the anticommutator of independent Wigner matrices

Our main result is a local limit law for the empirical spectral distribution of the anticommutator of independent Wigner matrices, modeled on the local semicircle law. Our approach is to adapt some techniques from one of the recent papers of Erdös-Yau-Yin. We also use an algebraic description of the law of the anticommutator of free semicircular variables due to Nica-Speicher, a self-adjointnes...

متن کامل

The Complex Multivariate Gaussian Distribution

Here I introduce package cmvnorm, a complex generalization of the mvtnorm package. A complex generalization of the Gaussian process is suggested and numerical results presented using the package. An application in the context of approximating the Weierstrass σ-function using a complex Gaussian process is given.

متن کامل

Spectral Sparsification of Random-Walk Matrix Polynomials

We consider a fundamental algorithmic question in spectral graph theory: Compute a spectral sparsifier of a random-walk matrix-polynomial

متن کامل

No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix

We consider a class of matrices of the form Cn = (1/N)A 1/2 n XnBnX ∗ nA 1/2 n , where Xn is an n × N matrix consisting of i.i.d. standardized complex entries, A n is a non-negative definite Hermitian square-root of the non-negative definite matrix An, and Bn is diagonal with nonnegative diagonal entries. Under the assumption that the distribution of the eigenvalues of An and Bn converge to pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2022

ISSN: ['1572-9230', '0894-9840']

DOI: https://doi.org/10.1007/s10959-022-01163-3